
Chapter 1

Introduction

During the last few years, an increasing number of behavioral scientists have begun to use

the World Wide Web as a tool for conducting psychological research. It is easy to understand

the appeal of using “the web” for research purposes. Just about any study that can be conducted

via traditional pencil-and-paper methods can be implemented on-line, but without the hassles of

explicit transcription or data entry, the scheduling of research participants, and paper costs.

Moreover, researchers who use computers in their experiments for manipulating visual or

narrative stimuli, randomizing trials, or creating customized assessments can easily implement

their studies on-line. Finally, although researchers can use the web simply as an efficient way to

collect data from undergraduates in their departmental subject pools (as is often done in

psychology), the web allows us to open our laboratory doors to participants from across the

world.

Unfortunately, there are very few resources available to the behavioral scientist who

wishes to create on-line research studies. One of the best books on the market, Introduction to

Behavioral Research on the Internet by Michael Birnbaum, does an outstanding job at broadly

reviewing many of the tools that one may use for Internet research, but does not focus on CGI

programming—a technique that is useful for designing dynamic and interactive on-line research

applications. Other texts, such as CGI Programming 101 by Jacqueline Hamilton or Perl and

CGI for the World Wide Web by Elizabeth Castro, are wonderful introductions to CGI

programming but are not written with the research scientist in mind.

My objective in writing this book was to create a basic, step-by-step guide for behavioral

researchers who are interested in using the Internet to conduct research. This book has been

R. Chris Fraley | Chapter 1 | p. 1

written to be a one-stop shop, if you will, for moving from “square one” to the point at which

you can create innovative and dynamic studies online. Any researcher with access to nothing

more than a desktop computer, an internet connection, a healthy dose of curiosity and patience,

and this book (of course) should be able to conduct on-line research within two weeks or less.

I thought it would be advantageous for researchers to have a thorough discussion of one

way to do Internet research, a way that was simple, required as few monetary investments as

possible, wouldn’t assume excessive programming knowledge, and wouldn’t require asking

favors from your local computer guru. Therefore, in this book I focus on server-side CGI

programming in Perl. (Exactly what this means will be explained in more depth below.) It is

not my intent to review all the possible tools that one could use to conduct on-line research (e.g.,

Java, JavaScript, ASP, Perl, PHP, C). I have chosen a way that works for me, and have

presented it here as simply as possible so that other researchers can take advantage of it. As a

consequence, some of the programming code we discuss will not be the most beautiful or

efficient code in the world. (If you don’t know what it means to describe code as “beautiful,”

that is a good thing—you have not been corrupted yet.) The code we discuss, however, will be

explained thoroughly and it will get the job done.

The intended audience for this book is anyone who currently conducts or is interested in

conducting research in the social and behavioral sciences (e.g., psychology, sociology,

epidemiology, economics, anthropology, marketing). As a psychologist, I have found it easiest

to write this book as if I were writing it for my colleagues and students in psychology. However,

many of the techniques and applications I discuss are not limited to psychology, and researchers

from other disciplines should have no trouble understanding how these tools can be used to serve

their purposes.

R. Chris Fraley | Chapter 1 | p. 2

What You Will Be Able to Accomplish

It is my intention to provide you with the skills and knowledge you need to design a wide

array of online research studies. To accomplish this, we will focus on many examples that

illustrate what I consider to be the generic components of research projects—techniques that are

common to a wide variety of research designs and areas of investigation. Here is a brief

sampling of some of the generic skills that you will learn from this book:

• You will learn how to create web-based questionnaires involving rating scales, free

responses, pull-down menus, and check lists.

• You will learn how to write programs that will store participants’ data automatically in a

text file—a file that can be imported easily into commonly used statistical packages and

spreadsheets, such as Excel, S-Plus, SAS, or SPSS.

• You will learn how to provide response-specific stimuli or specially tailored stimuli for

your participants. Moreover, you will learn how to write programs that process a

participant’s data and provide him or her with immediate feedback (e.g., whether he or

she was correct, how he or she scored on a personality inventory).

• You will learn how to randomize the order of stimuli, whether those stimuli are images,

text, or questionnaire items.

• You will learn how to randomly assign participants to conditions of an on-line

experiment.

• You will learn how to carry a participant’s responses forward from one web page to the

next in studies that use multiple web pages.

R. Chris Fraley | Chapter 1 | p. 3

• You will learn how to create online, Internet-grading quizzes for students. Also, I will

show you how to create an online discussion forum with which you and your students or

colleagues can exchange ideas.

• You will learn how to implement some basic graphing and data analytic techniques

online.

• You will learn how to implement logins, personal identification numbers (PINs), and

passwords so that the same participants can be studied over multiple sessions.

• You will learn how to assess reaction times online.

What You’ll Need

The only “thing” you will need in order to get up-and-running is a simple desktop

computer in your lab, office, or home. I will assume that your computer is connected to the

Internet, and that you can easily use it to surf the web or check e-mail. I will also assume that

your computer is running Microsoft Windows (95, 98, 2000, Me, XP) as its operating system.

This, of course, is not a prerequisite for conducting research over the web, but this book would

be more difficult to read if I were trying to explain how to do things for both PC users and

Macintosh users. If you’re an experienced Mac user, you should have no trouble adapting the

instructions discussed in this book to a Macintosh environment. You will also need some special

software that can be downloaded for free online, and I’ll show you how to do so in the next two

chapters. It should go without saying that you should already have some experience using the

Internet. If you use the web to order books, check e-mail, or search for interesting articles, you’ll

be fine. I will also assume that you have a research background that includes a minimum of an

undergraduate research methods and statistics course.

Some (Very) Basic Things You Need to Know about the Internet

R. Chris Fraley | Chapter 1 | p. 4

There are some recurring terms and concepts you’ll need to know in order to get the most

out of this book. A browser is a program used to view web pages. The two most commonly

used browsers are Netscape’s Navigator and Microsoft’s Internet Explorer. When you view a

web page, several complex things take place beneath the surface that make this possible. First,

when you type in a URL (Universal Resource Locator) or web address (e.g., http://www.web-

research-design.net/index.htm), your computer sends a request to another computer “located” at

that address. This computer is often called a server, and its job is to receive such requests, and

then “serve” the requested information back to you—the user.

More often than not, the kind of information that is sent to your browser is in the form of

hypertext markup language or HTML. HTML has become a standard way of sharing

information over the internet. Your browser translates the HTML code that it receives from a

server into the kinds of web pages with which we are familiar. The World Wide Web (WWW),

by the way, is nothing more than the network of computers across the world that participate in

this process.

In your typical day-to-day experience with the web, you probably do little more than view

your favorite web pages or link from one page to another in hopes of discovering something new

(or at least something entertaining). Sometimes, however, your web experience might be more

complex than this. You might, for example, use the web to manage your e-mail accounts or you

might order a book or a CD from on on-line retailer. In this later case, it should be clear that the

server is doing something much more complex than simply “serving” you the same old HTML

files that it serves everyone. It might, for example, be storing your shipping address or tracking

items you’ve purchased in the past in order to make recommendations for other products you

might enjoy. The pages you see in these cases are typically created “on the fly,” just for you.

R. Chris Fraley | Chapter 1 | p. 5

In short, the sever can be used to perform a number of tasks that make a user’s web

experience highly dynamic and interactive. In this book, I’m going to show you how to make

the server behave in these dynamic ways. Therefore, it is necessary to introduce some useful

sever-specific terminology from the get-go. The programs that we will write for the server are

often called CGI scripts. “CGI” is an acronym for Common Gateway Interface, a method or

protocol by which the server interacts with other software on the server (e.g., databases), as well

as other computers on the web. There are a number of programs and programming languages

that can be used for CGI programming (e.g., Cold Fusion, PHP, ASP, C+). In this book, we’re

going to focus on Perl. Perl (Practical Extraction and Report Language) is a highly versatile

programming language and it is one of the most popular languages for CGI scripting.

There is one final distinction that I should make because it will help you better understand

how the things we’ll be doing fit into the broader Internet context. In this book we’ll be focusing

on server-side programming—writing CGI programs that run on the server. Client-side

programming, in contrast, involves writing programs that run on the user’s (sometimes called the

client’s) browser. You’ve probably heard of some common client-side programming languages

before, such as JavaScript. JavaScript is a special kind of code that can be embedded in an

HTML document. When that file is delivered to the user’s browser, the JavaScript program is

executed by the browser and all the relevant computations (e.g., tallying up a total price) are

performed by the user’s computer. The advantage of using JavaScript is that all the computation

is done by the user’s computer. This frees up the server from having to perform resource-

consuming functions for multiple users at once. The downside of JavaScript is that is different

browsers do not always interpret the same JavaScript code in the same way. (In fact, different

versions of the same browser do not even interpret the same JavaScript code in the same

R. Chris Fraley | Chapter 1 | p. 6

manner!) Sometimes you might need to write separate JavaScript programs depending on

whether the user is working with Netscape Navigator or Internet Explorer. Moreover, some

users have the JavaScript option turned off on their browser. Most importantly, JavaScript

cannot be used to save data easily, making it virtually useless for serious research purposes.

Having worked with both server-side and client-side programs, I believe that server-side

programming is better tailored to the needs of the behavioral scientist.

How to Get the Most Out of This Book

In Chapter 2 I will show you how to get a web server up and running. We’ll discuss two

distinct ways for getting access to a web server and you will need to chose which method is best

for you. One approach is to transform one of your spare PCs into a web server. This is much

easier than it may sound, and I’ll walk you through each step to help ensure that the process goes

smoothly for you. One of the advantages of this approach is that, if you have a spare PC,

transforming the computer into a server is cost-free. Another approach is to find a professional

web hosting service and use their web server for your research. It is possible that your university

or department has a server that can be used for research purposes, but, if not, there are many

professional web hosting companies that will allow you to build your research web pages on

their computers either free of charge (if you agree to allow those companies to display small

advertisements on your web pages) or for a trivial fee (e.g., anywhere from $5 to $20 a month,

depending on your needs). The primary advantage of this approach is that it will require no

server maintenance on your part. In fact, if you have the extra money to spend, I would strongly

recommend this approach for the beginner. I would encourage you to skim through Chapter 2,

decide which approach seems best suited to your needs, and then follow the steps for that method

in order to get your server up and running.

R. Chris Fraley | Chapter 1 | p. 7

After you successfully set up your server in Chapter 2, I encourage you to work through

each example as you read the chapters. Learning how to write programs is a bit like learning

how to drive a car. Although you can read “Driving for Dummies” and become quite

knowledgeable about stick shifts and parallel parking, you won’t actually acquire the necessary

skills until you’re sitting in the driver’s seat. Designing web experiments is a skill, and your

ability to perform this skill well will depend less on memorizing the right kinds of facts and

details (you can always look those up in a reference manual) and more on acquiring a certain

degree of familiarity and intuition concerning the “logic” of programming. This book is a

“beginner’s guide” not because it shows you how to accomplish easy tasks in an easy way; the

book is a “beginner’s guide” because I have done my best to walk you through a highly complex

terrain without assuming you know your way around. With a fair amount of practice, you’ll

come to know this terrain well.

I encourage you to work through one chapter a day. As you read each chapter, you should

enter the programming code and see what it looks like on an actual web browser, such as

Microsoft’s Internet Explorer. To make this easy for you, all of the code that is presented in this

book can be copy-and-pasted from the web site for this book: http://www.web-research-

design.net. Moreover, “live” demonstrations of the various studies and applications that we

discuss can be accessed at that site. Be sure to tinker with the code a bit and see if things change

in the way in which you expect. Finally, after working your way though a chapter, take a break

and then reread the chapter. It is easy to lose sight of the Big Picture when you’re wading

through the minutia of programming code. Be sure to take a step back, reread the chapter, and

reflect on the skills you’re learning and how they may be applied to different contexts.

R. Chris Fraley | Chapter 1 | p. 8

At the end of each chapter I have included, where relevant, a table that contains all of the

new HTML or Perl/CGI code that was introduced in that chapter. As you’ll observe from

thumbing through the book, I introduce the majority of the programming code early in the book,

in Chapters 3 through 7. In fact, the latter half of the book uses very little new code. One of the

things you’ll discover as you begin to learn HTML and Perl is that you don’t need to know much

in order to accomplish a lot. Many of the complex techniques that we’ll discuss later in the

book, such as tracking a user’s responses over multiple sessions, involve finding novel and

creative ways to use the code we already know rather than learning new commands. With this in

mind, as you read the book I encourage you to think “outside of the box” and try to envision

some of the ways in which the skills you are learning can be reconfigured to address research

scenarios that are not discussed here.

I have also created some on-line quizzes that you can take to test your learning (see the

web page for this book: http://www.web-research-design.net). These quizzes, which are

discussed in detail in Chapter 14, will automatically score your answers and give you feedback

on your performance. Unlike the quizzes described in Chapter 14, however, they will not tell

you the correct answer when you get a question wrong. At the end of each chapter, you may

want to take the corresponding quiz multiple times until you have maximized your performance.

With the exception of Chapter 15, I have deliberately organized the chapters in a manner

that will allow you to build on skills that you have acquired earlier in the book. Thus, I

recommend that you read through the chapters sequentially. Even if you’re not interested in

randomly assigning your participants to different conditions (Chapter 8), the skills you learn in

that chapter will be critical to understanding things that may be of interest to you in later

chapters. In short, it may seem that you can pick and choose among the chapters in this book, but

R. Chris Fraley | Chapter 1 | p. 9

I strongly discourage you from approaching the book in that manner. I have written the chapters

in a fashion that allows you to gradually build your programming skills, so you should tackle

each chapter in turn—even if it focuses on a research technique that seems tangential to your

interests.

I will adopt a few conventions throughout this book that should make your reading and

programming experience easier. First, all code, whether it be HTML or Perl code, will be

printed in Courier typeface. Moreover, whenever a sizable portion of code (e.g., a CGI

script) is being presented, I’ll place it within a box so it can be easily separated from the rest of

the text. Finally, I’ll often make parenthetical comments or important qualifications throughout

the text. Instead of placing these in footnotes (where they are easily overlooked), I have placed

them in gray boxes.

R. Chris Fraley | Chapter 1 | p. 10

